Identification of a new class of potent Cdc7 inhibitors designed by putative pharmacophore model: Synthesis and biological evaluation of 2,3-dihydrothieno[3,2-d]pyrimidin-4(1H)-ones

Bioorg Med Chem. 2017 Apr 1;25(7):2133-2147. doi: 10.1016/j.bmc.2017.02.021. Epub 2017 Feb 16.

Abstract

Cell division cycle 7 (Cdc7) is a serine/threonine kinase that plays important roles in the regulation of DNA replication process. A genetic study indicates that Cdc7 inhibition can induce selective tumor-cell death in a p53-dependent manner, suggesting that Cdc7 is an attractive target for the treatment of cancers. In order to identify a new class of potent Cdc7 inhibitors, we generated a putative pharmacophore model based on in silico docking analysis of a known inhibitor with Cdc7 homology model. The pharmacophore model provided a minimum structural motif of Cdc7 inhibitor, by which preliminary medicinal chemistry efforts identified a dihydrothieno[3,2-d]-pyrimidin-4(1H)-one scaffold having a heteroaromatic hinge-binding moiety. The structure-activity relationship (SAR) studies resulted in the discovery of new, potent, and selective Cdc7 inhibitors 14a, c, e. Furthermore, the high selectivity of 14c, e for Cdc7 over Rho-associated protein kinase 1 (ROCK1) is discussed by utilizing a docking study with Cdc7 and ROCK2 crystal structures.

Keywords: Cell division cycle 7 (Cdc7); Dihydrothieno[3,2-d]-pyrimidin-4(1H)-one; Pharmacophore model.

MeSH terms

  • Cell Cycle Proteins / antagonists & inhibitors*
  • Humans
  • Models, Molecular
  • Protein Serine-Threonine Kinases / antagonists & inhibitors*
  • Pyrimidinones / chemical synthesis
  • Pyrimidinones / chemistry
  • Pyrimidinones / pharmacology*
  • Structure-Activity Relationship

Substances

  • Cell Cycle Proteins
  • Pyrimidinones
  • CDC7 protein, human
  • Protein Serine-Threonine Kinases